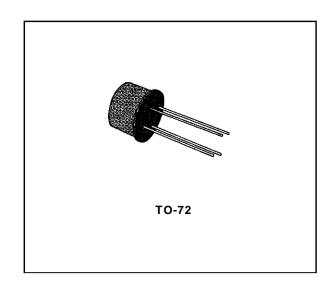
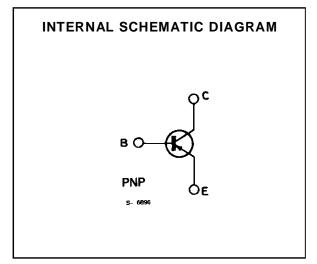


WIDE BAND VHF/UHF AMPLIFIER


- SILICON PLANAR EPITAXAL TRANSISTOR
- TO-72 METAL CASE
- VERY LOW NOISE


APPLICATIONS:

- TELECOMMUNICATIONS
- WIDE BAND UHF AMPLIFIER
- RADIO COMMUNICATIONS

DESCRIPTION

The BRF99A is a silicon planar epitaxial PNP transistor produced using interdigitated base emitter geometry. It is particulary designed for use in wide band common-emitter linear amplifiers up to 1GHz. It features very high f_T , low reverse capacitance, excellent cross modulation properties and very low noise performance. The BFR99A is complementary to the BFY90. Typical applications include telecommunication and radio communication equipment.

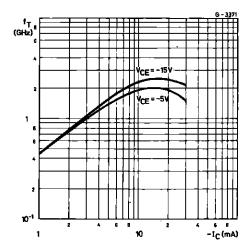
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CBO}	Collector-base Voltage (I _E = 0)	- 25	V
V _{CEO}	Collector-emitter Voltage (I _B = 0)	- 25	V
V_{EBO}	Emitter-base Voltage (I _C = 0)	- 3	V
Ic	Collector Current	- 50	mA
P _{tot}	Total Power Dissipation at $T_{amb} \le 25$ °C at $T_{case} \le 25$ °C	225 360	mW mW
T_{stg}, T_{j}	Storage and Junction Temperature	- 55 to 200	°C

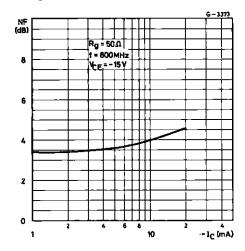
December 1988 1/7

THERMAL DATA

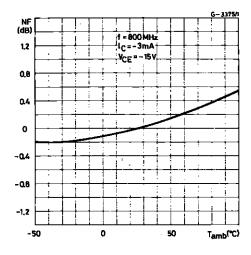
R _{th j-case}	Thermal Resistance Junction-case	Max	486	°C/W	l
R _{th j-amb}	Thermal Resistance Junction–ambient	Max	777	°C/W	l

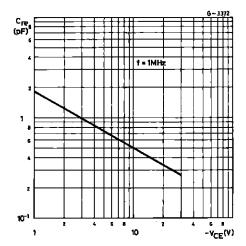

ELECTRICAL CHARACTERISTICS ($T_{amb} = 25 \, ^{\circ}C$ unless otherwise specified)

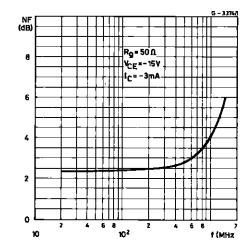
Symbol	Parameter	Test Conditions		Parameter Test Conditions		Min.	Тур.	Max.	Unit
Ісво	Collector Cutoff Current (I _E = 0)	V _{CB} = - 15 V				- 100	nA		
V _{(BR) CBO}	Collector-base Breakdown Voltage (I _E = 0)	I _C = - 100 μA		- 25			V		
V _{CEO (sus)*}	Collector–emitter Sustaining Voltage $(I_B = 0)$	I _C = - 5 mA		- 25			V		
V _{(BR) EBO}	Emitter-base Breakdown Voltage $(I_C = 0)$	I _E = - 10 μA		- 3			V		
V _{CEK} **	Collector-emitter Knee Voltage	$I_C = -20 \text{ mA}$			- 0.8		V		
V_{BE}	Base-emitter Voltage	$I_{C} = -10 \text{ mA}$	$V_{CE} = -10 \text{ V}$		- 0.75		V		
h _{FE} *	DC Current Gain	$I_{C} = -1 \text{ mA}$ $I_{C} = -10 \text{ mA}$ $I_{C} = -20 \text{ mA}$	$V_{CE} = -10 V$ $V_{CE} = -10 V$ $V_{CE} = -10 V$	25 20	75 80				
f⊤	Transition Frequency	I _C = - 10 mA f = 100 MHz	$V_{CE} = -15 \text{ V}$	1.4	2.3		GHz		
C _{re}	Reverse Capacitance	I _C = 0 f = 1 MHz	$V_{CE} = -15 \text{ V}$		0.4		pF		
NF	Noise Figure	$I_C = -3 \text{ mA}$ $R_g = 50 \Omega$ $I_C = -10 \text{ mA}$ $R_g = 50 \Omega$	$V_{CE} = -15 \text{ V}$ $f = 200 \text{ MHz}$ $f = 800 \text{ MHz}$ $V_{CE} = -15 \text{ V}$ $f = 200 \text{ MHz}$ $f = 800 \text{ MHz}$		2.5 3.5 3 4	4 5	dB dB dB		
Gpe	Power Gain	I _C = - 10 mA f = 800 MHz	$V_{CE} = -15 \text{ V}$		10		dB		
Po	Output Power	I _C = - 10 mA f = 800 MHz	V _{CE} = - 15 V		14		mW		
$ S_{21e} ^2$	Transcuder Power Gain	$I_C = -10 \text{ mA}$ $R_g = R_L = 50 \Omega$	$V_{CE} = -15 \text{ V}$ f = 800 MHz		8		dB		

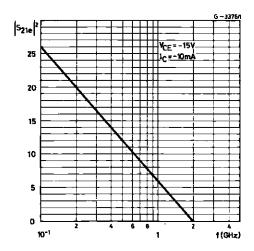


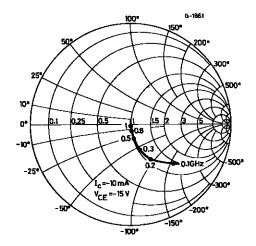
^{*} Pulsed : pulse duration = $300\mu s$, duty cycle = 1%* * I_B = value corresponding to I_C = -22mA and V_{CE} = -1V.

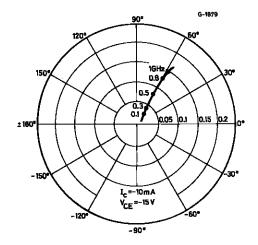

Transition Frequency.

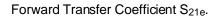

Noise Figure vs. Collector Current.

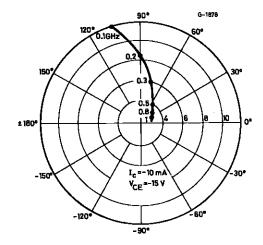

Noise Figure vs. Ambient Temperature.


Reverse Capacitance.

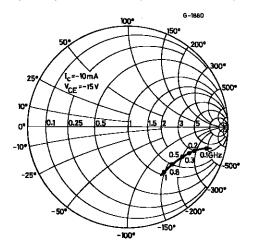

Noise Figure vs. Frequency.

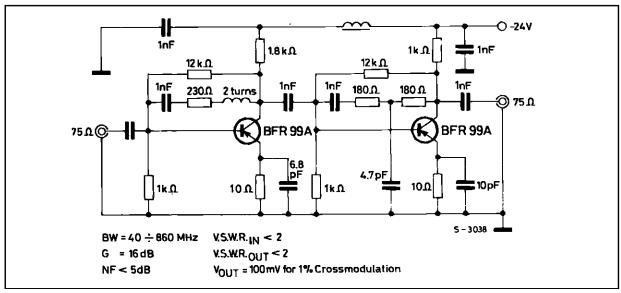

Transducer Power Gain.

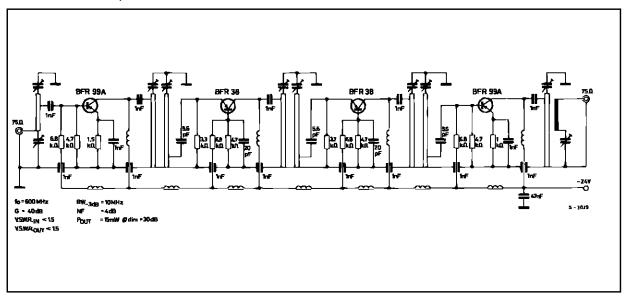

Input Impedance S_{11e} (50 Ω normalized).



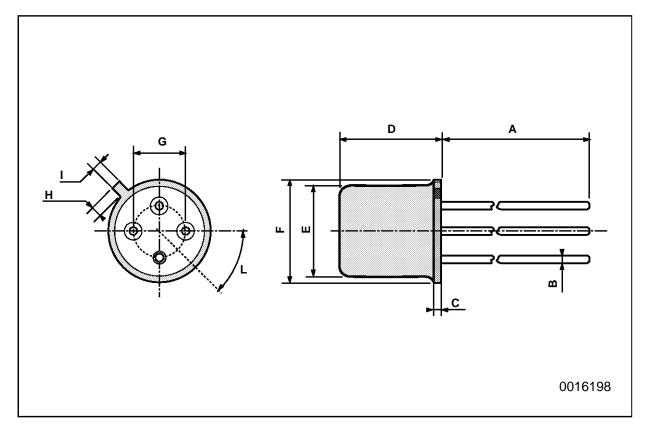
Reverse Transfer Coefficient S_{12e}.




Wide Band MATV Amplifier.



Output Impedance S_{22e} (50 Ω normalized).



MATV Channel Amplifier.

TO-72 MECHANICAL DATA

DIM.	mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А		12.7			0.500	
В			0.49			0.019
D			5.3			0.208
E			4.9			0.193
F			5.8			0.228
G	2.54			0.100		
Н			1.2			0.047
ı			1.16			0.045
L	45°			45°		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

